If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-34t-180=0
a = 4.9; b = -34; c = -180;
Δ = b2-4ac
Δ = -342-4·4.9·(-180)
Δ = 4684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4684}=\sqrt{4*1171}=\sqrt{4}*\sqrt{1171}=2\sqrt{1171}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-34)-2\sqrt{1171}}{2*4.9}=\frac{34-2\sqrt{1171}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-34)+2\sqrt{1171}}{2*4.9}=\frac{34+2\sqrt{1171}}{9.8} $
| 2(x+4)+5x=-5 | | x-22=68 | | u/5+17=28 | | 2(4x-4)=42 | | 5x-10=7x-16 | | .75=y-1.6 | | 5/5b+3=2/b- | | -x-2x=3x | | 33=4v-15 | | 14x+3=9x+19 | | 14x+3/5x+6= 1/2 | | 34=y−1.6 | | 14x+35x+6= 12 | | 3(5-c)-23=17c-4(2+5c) | | 3w^2-(w-5)(w-3)=3w^2+1 | | -4=-6x-1 | | 12y^2-3y=0 | | Y=x(2)+2 | | S=2(3.14)+3x(2x+5) | | 5/2y-7=3/7 | | -2x+2x10=10 | | 7(x+5)=7(x-2) | | -x+2=-1+2x | | 2x-13=x+27 | | 180=62+(2+3x) | | 1/5k-(k+1/2)=1/10(k+5) | | 6+2/5x=13 | | 14-8x=-58 | | 5x-7=4x+18 | | 4-2=1n-6 | | 7x-30=3x+14 | | 18=2x-4(3-x) |